Aujourd’hui je te fais un article super court pour te parler de l’oxyde nitrique, il s’agit d’un gaz capable de dilater les vaisseaux sanguins et de renforcer la congestion musculaire. La molécule agis comme messager chimique et au final, il s’agit simplement de monoxyde d’azote.
Plus tu as d’oxyde nitrique dans le sang est un facteur positif pour ta santé jusqu’à un certain niveau, cela diminue ta tension artérielle, améliore ta santé cardiovasculaire et chez les hommes, cela donne aussi de plus grosses érections.
Bienfaits principaux
L’oxyde nitrique serait donc capable de :
- Augmenter ta force et ton endurance en améliorant la vascularisation des muscles notamment
- D’améliorer ton sommeil (et ça, améliore tout)
- Mieux gérer le glucose (amélioration de la sensibilité a l’insuline amène pleins de bonnes choses dont plus de testostérone)
- Améliorer ta mémoire
- Aider ton système immunitaire
- Un meilleure gestion de l’oxygène (positif)
Comment augmenter ses niveaux d’oxyde nitrique
L’oxyde nitrique est produit par le corps a partir de l’acide aminé arginine sur lequel j’ai un article ou du nitrate; La consommation de nitrate ou d’arginine va temporairement augmenter les niveaux d’oxyde nitrique et donc les conséquences listées. Cependant, une molécule plus intéressante est la citrulline qui va avoir des effets plus long en augmentant les niveaux d’arginine sanguins pendant une plus longue période que l’arginine elle même.
Que disent les études scientifiques
Tu peux retrouver toutes les informations nécessaires directement dans cette méta analyse qui regroupe beaucoup d’études sur les 3 molécules cités plus haut (citruline, arginine et nitrates).
Je te met quand même les résultats ici si pour chacune des molécules jamais tu n’a pas envie de lire ce pavé entièrement écris en anglais.
Dans les tableauw que tu vas voir si dessous :
↔ : Signifie qu’il n’y a pas de modification significative
↑Signifie que l’augmentation est signifivative
et puis la flèche vers le bas, c’est l’inverse de celle vers le haut 😉.
Etudes sur l’arginine
Les résultats de l’étude visibles dans le tableau juste en dessous sont clairs, consommer de l’arginine ne permet une augmentation assez durable de l’oxyde nitrique pour obtenir de gros gains de force ou d’endurance.
Study | Subjects | Design | Intervention | Performance Tests | Main Findings |
---|---|---|---|---|---|
Aguiar et al. (2016) [33] | 20 physically active older women (71.6 ± 5.9 y; 61.9 ± 8.6 kg) | Randomized, double-blind, placebo-controlled study | 8 g L-arginine vs. placebo; 80 min prior | 3 sets of 8 maximal isokinetic leg extensions at 60°·s−1 Maximal unilateral isometric force at 60° of knee flexion Sit–stand, tandem gait, and timed up and go functional tests | ↔ isokinetic strength ↔ isometric strength ↔ functional tests ↔ femoral artery vasodilation |
Álvares et al. (2012) [30] | 15 recreationally trained men (26.3 ± 4.9 y; 79.2 ± 13.4 kg) | Randomized, double-blind, placebo-controlled study | 6 g L-arginine vs. placebo; 80 min prior | 3 sets of 10 maximal isokinetic elbow extensions at 60°·s−1 | ↔ isokinetic strength ↔ NOx |
Andrade et al. (2018) [44] | 20 recreationally active men and women (23.0 ± 4.0 y; 71.2 ± 8.3 kg) | Randomized, double-blind, placebo-controlled study | 6 g L-arginine vs. placebo; 60 min prior | 3 sets of 8–12 leg press and hack squat (70% 1RM) 1 set of leg press (60% 1RM) to failure performed at 24, 48, and 72 h post | ↔ repetitions to failure ↔ surface EMG ↔ creatine kinase ↔ lactate ↔ testosterone:cortisol ratio ↔ muscle soreness |
Campbell et al. (2006) [40] | 35 resistance trained men (38.9 ± 5.8 y; 86.0 ± 13.7 kg) | Randomized, double-blind, placebo-controlled study | 12 g L-arginine α-ketoglutarate (1:1 ratio) vs. placebo; daily for 8 weeks during periodized resistance training | 1RM bench press Isokinetic leg extension endurance test 30 s WAnT Aerobic capacity test Body composition | ↑ 1RM bench press ↔ isokinetic endurance ↑ peak WAnT power ↔ aerobic capacity ↔ body composition |
Fahs et al. (2009) [34] | 18 healthy men (24.2 ± 0.7 y; 86.7 ± 4.9 kg) | Randomized, double-blind, placebo-controlled, crossover study | 7 g L-arginine vs. placebo; 30 min prior | 4 sets of 5 bench press (80% 1RM) 4 sets of 10 biceps curl (70% 1RM) | ↔ forearm blood flow ↔ arterial stiffness |
Greer & Jones (2011) [39] | 12 resistance-trained men (22.6 ± 3.8 y; 12.1 ± 4.1% body fat) | Randomized, double-blind, placebo-controlled, crossover study | 3.7 g L-arginine α-ketoglutarate vs. placebo; 4 h and 30 min prior | 3 sets of chin-ups, reverse chin-ups, and push-ups to failure | ↓ repetitions to failure |
Liu et al. (2009) [31] | 10 elite judo athletes (20.2 ± 0.6 y; 73.3 ± 2.1 kg) | Randomized, double-blind, placebo-controlled, crossover study | 6 g L-arginine vs. placebo; 3 days (60 min prior) | Intermittent anaerobic exercise test | ↔ peak power ↔ average power ↑ arginine concentrations ↔ NO x↔ lactate ↔ ammonia |
Meirellas & Matsuura (2018) [32] | 12 recreationally resistance-trained men (27 ± 3 y; 77 ± 8 kg) | Randomized, double-blind, placebo-controlled, crossover study | 6 g L-arginine vs. placebo; 60 min prior | 3 sets of bench press (70% 1RM) to failure 3 sets knee extensions (80% 1RM) to failure | ↔ repetitions to failure ↔ NOx |
Olek et al. (2010) [37] | 6 physically active men (23.2 ± 0.5 y; 84.0 ± 2.5 kg) | Randomized, double-blind, placebo-controlled, crossover study | 6 g L-arginine vs. placebo; 60 min prior | 3 30 s WAnT | ↔ WAnT performance ↔ lactate ↔ ammonia |
Santos et al. (2002) [36] | 12 inactive men (23.8 ± 3.5 y; 75.8 ± 12.1 kg) | Non-randomized, non-placebo- controlled study | 3 g L-arginine for 15 days; 60 min prior | 15 maximal isokinetic leg extensions at 180°·s−1 | ↓ work fatigue index |
Tang et al. (2011) [35] | 8 recreationally active men (22.1 ± 2.6 y; 76.6 ± 6.2 kg) | Randomized, double-blind, crossover study | 10 g of essential amino acids with 10 g of L-arginine vs. isonitrogenous control; post-exercise | Unilateral seated leg press and knee extension exercises | ↔ NO synthesis ↔ muscle blood flow ↔ muscle protein synthesis |
Wax et al. (2013) [38] | 19 recreationally active men (19.4 ± 1.3 y; 79.2 ± 10.6 kg) | Randomized, double-blind, placebo-controlled, crossover study | 3 g L-arginine α-ketoglutarate vs. placebo; 45 min prior | 1RM bench press and leg press 1 set of bench press and leg press (60% 1RM) to failure | ↔ 1RM strength ↔ repetitions to fatigue |
Etudes sur la citrulline
C’est selon moi la molécule la plus intéressante comme tu peux le voir dans le tableau si dessous. La citrulline est capable d’augmenter fortement les performances en force et en endurance. Les participants des 10 études ci dessous étaient capables de soulever plus lourd, pour plus de reps et avaient moins de courbatures.
Study | Subjects | Design | Intervention | Performance Tests | Main Findings |
---|---|---|---|---|---|
Chappell et al. (2018) [67] | 15 recreationally resistance-trained men and women (23.7 ± 2.4 y; 75.2 ± 13.7 kg) | Randomized, double-blind, placebo-controlled, crossover study | 8 g CitMal vs. placebo; 60 min prior | 10 sets of concentric only single leg knee extensions (70% peak force) to failure Isokinetic leg extension test before and after protocol | ↔ repetitions to failure ↔ isometric force ↔ blood lactate |
Chappell et al. (2020) [68] | 19 recreationally active men and women (25.7 ± 7.7 y; 75.3 ± 13.7 kg) | Randomized, double-blind, placebo-controlled, crossover study | 8 g CitMal vs. placebo; 60 min prior | 10 sets of up to 10 barbell curls (80% 1RM) to failure | ↔ repetitions to failure ↔ blood lactate |
Cutrufello et al. (2015) [57] | 22 recreationally trained men (20.6 ± 1.2 y; 78.7 ± 9.9 kg) and women (21.0 ± 1.3 y; 65.5 ± 10.9 kg) | Randomized, double-blind, placebo-controlled, crossover study | 710 mL watermelon juice (~1.0 g L-citrulline) vs. 6 g L-citrulline vs. placebo; 60 min prior | FMD of brachial artery 5 sets of chest press (80% 1RM) to failure | ↔ repetitions to failure ↔ FMD |
Farney et al. (2019) [69] | 12 recreationally trained men and women (24.0 ± 3.9 y) | Randomized, double-blind, placebo-controlled, crossover study | 8 g CitMal vs. placebo vs. control (no drink); 60 min prior | 3 rounds of squats, lunge jumps, squat jumps, and lateral jumps with weighted vest (40 lb. for men; 20 lb. for women) Isokinetic leg extension test performed before and after protocol | ↔ total work ↔ peak power ↔ peak torque ↔ fatigue rate ↔ blood lactate |
Fick et al. (2021) [70] | 18 recreationally trained men (24.0 ± 5.0 y; 83.0 ± 14.0 kg) | Randomized, double-blind, placebo-controlled, crossover study | 8 g CitMal vs. placebo; 7 days (60 min prior) | 30 min cycling test at 50-65% max power 50 maximal isokinetic leg extensions at 180°·s−1 | ↔ peak power ↔ peak torque ↔ fatigue rate |
Gills et al. (2021) [62] | 19 recreationally trained women (23.5 ± 3.1 y; 61.9 ± 8.4 kg) | Randomized, double-blind, placebo-controlled, crossover study | 8 g CitMal vs. placebo; 60 min prior | 5 maximal isokinetic leg extensions at 60°·s−1 50 maximal isokinetic leg extensions at 180°·s−1 | ↑ total work during 5 repetition protocol ↔ performance during 50 repetition protocol |
Glenn et al. (2016) [61] | 17 Masters female tennis athletes (51 ± 9 y; 66.6 ± 9.5 kg) | Randomized, double-blind, placebo-controlled, crossover study | 8 g CitMal vs. placebo; 60 min prior | Maximal isometric hand-grip strength VJ assessment 30-sec WAnT | ↑ grip strength ↔ VJ power ↑ peak WAnT power ↑ explosive WAnT power ↔ anaerobic capacity |
Glenn et al. (2017) [63] | 15 resistance-trained women (23 ± 3 y; 67.1 ± 7.0 kg) | Randomized, double-blind, placebo-controlled, crossover study | 8 g CitMal vs. placebo; 60 min prior | 6 sets of bench press (80% 1RM) to failure 6 sets of leg press (80% 1RM) to failure | ↑ bench press repetitions to failure ↑ leg press repetitions to failure ↓ RPE |
Gonzalez et al. (2018) [59] | 12 recreationally resistance-trained men (21.4 ± 1.6 y; 85.0 ± 12.4 kg) | Randomized, double-blind, placebo-controlled, crossover study | 8 g CitMal vs. placebo; 40 min prior | 5 sets of bench press (75% 1RM) to failure | ↔ repetitions to failure ↔ RPE ↔ triceps muscle thickness ↔ peak and mean power ↔ subjective measures of energy, focus, fatigue, and “muscle pump” |
Gonzalez et al. (2022) [60] | 15 resistance-trained men (22.4 ± 2.9 y; 82.7 ± 11.2 kg) | Randomized, double-blind, placebo-controlled, crossover study | Watermelon juice concentrate (~2.2 g L-citrulline) vs. placebo; 7 days (60 min prior) | IMTP 2 sets of 2 “explosive” bench press repetitions (75% 1RM) 5 sets of bench press (75% 1RM) to failure | ↔ IMTP peak force ↔ bench press mean/peak power ↔ repetitions to failure ↔ RPE ↔ muscle oxygenation ↔ brachial artery diameter ↔ subjective measures of energy, focus, fatigue, and “muscle pump” |
Hwang et al. (2018) [72] | 50 resistance-trained men (18–35 y) | Randomized, double-blind, placebo-controlled study | 2 g CitMal·d−1 vs. placebo; daily for 8 weeks during periodized resistance training (60 min prior) | Bench press 1RM Leg press 1RM Body composition | ↔ bench press 1RM ↔ leg press 1RM ↔ body composition |
Martínez-Sánchez et al. (2017) [71] | 19 resistance-trained men (23.9 ± 3.7 y; 75.2 ± 7.6 kg) | Randomized, double-blind, placebo-controlled, crossover study | Watermelon juice (~0.5 g L-citrulline) vs. watermelon juice enriched with L-citrulline (~3.3 g L-citrulline) vs. placebo; 60 min prior | 8 sets of 8RM barbell half squats Isokinetic knee extension test performed before and after protocol | ↔ power during squats ↔ force during squats ↔ peak torque ↓ RPE (enriched only) ↓ muscle soreness at 24- and 48-h post (enriched only) |
Perez-Guisado & Jakeman (2010) [64] | 41 resistance-trained men (29.8 ± 7.64 y; 81.12 ± 17.43 kg) | Randomized, double-blind, placebo-controlled, crossover study | 8 g CitMal vs. placebo; 60 min prior | 4 sets of bench press (80% 1RM) to failure 4 sets of incline bench press (80% 1RM) to failure 4 sets of incline fly (60% 1RM) to failure 4 sets of bench press (80% 1RM) to failure | ↑ repetitions to failure during bench press exercise ↓ muscle soreness at 24- and 48-h post |
Trexler et al. (2019) [58] | 27 recreationally active men (22.0 ± 4.0 y; 78.9 ± 12.5 kg) | Randomized, double-blind, placebo-controlled, crossover study | 8 g CitMal vs. placebo; 120 min prior | 5 sets of 30 maximal isokinetic concentric knee extensions at 180°·s−1 | ↔ peak and average torque ↔ total work ↔ blood lactate ↔ femoral artery diameter ↔ vastus lateralis cross-sectional area |
Wax et al. (2015) [65] | 12 resistance-trained men (22.1 ± 1.4 y; 84.8 ± 10.9 kg) | Randomized, double-blind, placebo-controlled, crossover study | 8 g CitMal vs. placebo; 60 min prior | 5 sets of leg press, hack squats, and leg extensions (60% 1RM) to failure | ↑ leg press repetitions to failure ↑ hack squat repetitions to failure ↑ leg extension repetitions to failure ↔ blood lactate |
Wax et al. (2016) [66] | 14 resistance-trained males (23.3 ± 1.5 y; 87.8 ± 9.1 kg) | Randomized, double-blind, placebo-controlled, crossover study | 8 g CitMal vs. placebo; 60 min prior | 3 sets of chin-ups, reverse chin-ups, and push-ups (bodyweight) to failure | ↑ chin-up repetitions to failure ↑ reverse chin-up repetitions to failure ↑ push-up repetitions to failure ↔ blood lactate |
Les effets des nitrates
Et comme tu peux le voir dans le tableau ci dessous, les études ont prouvé que les nitrates sont en moyenne capable d’augmenter les performances de force de 5% mais cela peut être beaucoup plus puisque c’est dépendant de la dose.
Study | Subjects | Design | Intervention | Performance Tests | Main Findings |
---|---|---|---|---|---|
Bender et al. (2018) [94] | 12 healthy, active male adolescents (16.8 ± 1.0 y; 74.8 ± 12.5 kg) | Randomized, double-blind, placebo-controlled, crossover study | BRJ (800 mg/~12.9 mmol nitrates) vs. nitrate depleted placebo; 150 min prior | IMTP 4 20 s WAnT | ↑ IMTP peak force ↔ WAnT |
Coggan et al. (2015) [93] | 12 healthy men and women (36 ± 10 y; 26.1 ± 4.1 kg·m2) | Randomized, double-blind, placebo-controlled, crossover study | BRJ (11.2 mmol nitrates) vs. nitrate depleted placebo; 120 min prior | Isokinetic knee extensions at 0, 90, 180, 270, & 360° s−1 50-contraction fatigue test at 180° s−1 | ↑ maximal knee extensor velocity ↑ maximal knee power velocity ↑ peak torque at 360° s−1 ↔ 50-contraction fatigue test |
Flanagan et al. (2016) [104] | 14 resistance-trained males (21.1 ± 0.9 y; 77.6 ± 4.3 kg) | Randomized, double-blind, placebo-controlled, crossover study | Nitrate-rich bar (35.2 mg nitrates) vs. nitrate-poor bar; 3 days | Dynamic box squat pyramid protocol (60-90% 1RM ascending and descending load by 10%) Box squat MVIC with EMG | ↔ box squat repetitions to failure ↑ mean peak EMG amplitude |
Garnacho-Castaño et al. (2022) [103] | 11 trained male CrossFit athletes (29.2 ± 3.7 y; 78.9 ± 5.4 kg) | Randomized, double-blind, placebo-controlled, crossover study | BRJ (~800 mg/12.8 mmol nitrates) vs. placebo; 180 min prior | 90 s of wall-balls (10 kg) and 60 s of back squat (50% 1RM) separated by 3 min rest, followed by 90 s of wall-balls (10 kg) and 60 s of back squat (50% 1RM) without rest between the two exercises | ↑ back squat repetitions completed in 1st round ↔ wall-balls repetitions completed in 1st round ↔ back squat or wall-balls completed in 2nd round |
Haynes et al. (2021) [86] | 10 resistance-trained males (22.6 ± 3.2 y; 88.3 ± 7.8 kg) | Randomized, double-blind, placebo-controlled, crossover study | Red spinach extract (180 mg nitrates) vs. maltodextrin placebo; 7 days (60 min prior) | 5 sets of bench press (75% 1RM) to failure | ↔ repetitions to failure ↔ velocity & power during bench press |
Haider & Folland (2014) [97] | 19 healthy untrained males (21 ± 3 y; 73 ± 10 kg) | Randomized, double-blind, placebo-controlled, crossover study | BRJ (9.7 mmol) vs. placebo; 7 days (150 min prior) | Surface EMG during voluntary and involuntary knee extension MVIC at 110° & 120° | ↔ maximal and explosive voluntary force ↑ maximal evoked force ↑ twitch peak force |
Jonvik et al. (2021) [96] | 15 recreationally active males (25 ± 4 y; 81 ± 10 kg) | Randomized, double-blind, placebo-controlled, crossover study | BRJ (985 mg nitrates) vs. nitrate depleted placebo; 6 days (180 min prior) | CMJ Knee extension MVIC at 30° & 60° Isokinetic knee extension/flexion at 60°,120°,180°, & 300°·s−1 30 isokinetic knee extensions at 180°·s−1 | ↔ CMJ jump ↔ isometric strength ↑ isokinetic knee flexion power at 60°·s−1 ↔ isokinetic knee flexion power at 120°,180°, and 300°·s−1 ↔ isokinetic knee extension power at all velocities ↔ total workload and fatigue index for 30 isokinetic repetitions |
Jurado-Castro et al. (2022) [101] | 14 physically active women (25.4 ± 4.0 y; 57.0 ± 5.4 kg) | Randomized, double-blind, placebo-controlled, crossover study | BRJ (400 mg/6.4 mmol nitrates) vs. nitrate depleted placebo; 120 min prior | CMJ Back squat mean and peak power and velocity at 50% and 70% 1RM 3 sets of back squat, leg press, and leg extension (75% 1RM) to failure | ↑ CMJ height ↑ mean/peak velocity at 50% 1RM ↑ mean/peak power at 50% 1RM ↑ repetitions to failure |
Kramer et al. (2016) [95] | 12 male CrossFit athletes (23 ± 5 y; 82.7 ± 13.5 kg) | Randomized, double-blind, placebo-controlled, crossover study | 8 mmol potassium nitrate vs. nitrate-free potassium chloride; 6 days | Day 1: 2 sets of 5 isokinetic knee extension/flexion at 60°·s−1 and 180°·s−1 30-s WAnT Day 2: CrossFit workout (“Grace” protocol) | ↔ Isokinetic leg performance ↔ Isometric leg performance ↑ peak WAnT power ↔ CrossFit performance |
Mosher et al. (2016) [98] | 12 recreationally trained males (21 ± 2 y; 82.5 ± 9.8 kg) | Randomized, double-blind, placebo-controlled, crossover study | BRJ (6.4 mmol nitrate) vs. nitrate depleted placebo; 6 days (150 min prior) | 3 sets of bench press (60% 1RM) to failure | ↑ repetitions to failure ↑ total weight lifted |
Porcelli et al. (2016) [81] | 7 recreationally active males (25 ± 2 y; 66.3 ± 6.0 kg) | Randomized, crossover study | High-nitrate diet (~8.2 mmol·d−1) vs. control diet (~2.9 mmol·d−1); 6 days | Knee extension MVIC Isometric knee extensions (75% max voluntary torque) to failure | ↔ MVIC ↑ muscle work during isometric knee extensions |
Ranchal-Sanchez et al. (2020) [99] | 12 recreationally trained males (24 ± 3 y; 73 ± 9.2 kg) | Randomized, double-blind, placebo-controlled, crossover study | BRJ (400 mg nitrates) vs. nitrate depleted placebo; 120 min prior | 3 sets of the back squat and bench press (60%, 70%, and 80% 1RM) to failure | ↑ total repetitions to failure ↑ back squat repetitions to failure ↔ bench press repetitions to failure ↔ maximum power & velocity for back squat and bench press |
Rodríguez-Fernández et al. (2021) [102] | 18 healthy, active adult males (22.8 ± 4.9 y; 74.4 ± 9.6 kg) | Randomized, double-blind, placebo-controlled, crossover study | BRJ (800 mg nitrates) vs. nitrate depleted placebo; 150 min prior | 4 sets of 8 maximal half-squats on flywheel device at inertial loads of 0.025, 0.050, 0.075, & 0.100 kg·m−2 | ↑ mean/peak power during concentric and eccentric contractions at all inertial loads |
Tan et al. (2022) [87] | 14 recreationally active males (22 ± 5 y; 84 ± 17 kg) | Randomized, double-blind, placebo-controlled, cross-over study | BRJ (11.8 mmol nitrates) vs. nitrate depleted placebo; 4 days | 2 sets of 2 “explosive” back squat and bench press repetitions (70% 1RM) 1 set of back squat and bench press (60% 1RM) to failure | ↔ back squat mean/peak power ↔ bench press mean/peak power ↑ bench press repetitions to failure ↔ quadricep & pectoralis tissue saturation index |
Tillin et al. (2018) [113] | 17 recreationally active males (23 ± 4 y; 74.0 ± 9.6 kg) | Randomized, double-blind, placebo-controlled, crossover study | BRJ (800 mg/~12.9 mmol nitrate) vs. nitrate depleted placebo; 7 days (150 min prior) | Knee extensions MVIC and involuntary tetanic contractions at 10, 20, 50, and 100 Hz in unfatigued and fatigued state (following 60 MVICs) | ↔ knee extension performance in unfatigued state ↓ fatigue during the 60 MVICs ↑ knee extension performance in fatigued state (lower decline in tetanic force) |
Townsend et al. (2021) [105] | 16 Division I male baseball athletes (20.5 ± 1.7 y; 90.4 ± 10.5 kg) | Randomized, double-blind, placebo-controlled, parallel study | Red spinach extract (180 mg nitrates) vs. placebo; daily for 11 weeks during offseason training (~30 min prior) | 1RM bench press 30 s WAnT Body composition Muscle thickness of RF and VL via ultrasound | ↔ 1RM Bench Press ↔ WAnT ↔ Body Composition ↔ Muscle Thickness (RF, VL) |
Trexler et al. (2019) [58] | 27 recreationally active males (22.0 ± 4.0 y; 78.9 ± 12.5 kg) | Randomized, double-blind, placebo-controlled, crossover study | BRJ (400 mg nitrates) vs. placebo; 120 min prior | 5 sets of 30 maximal isokinetic concentric knee extensions at 180°·s−1 | ↔ peak and average torque ↔ total work ↔ blood lactate ↔ femoral artery diameter ↔ vastus lateralis cross-sectional area |
Williams et al. (2020) [100] | 11 resistance-trained males (22.1 ± 2.4 y; 89.3 ± 10.3 kg) | Randomized, double-blind, placebo-controlled, crossover study | BRJ (400 mg nitrate) vs. nitrate depleted placebo; 120 min prior | 2 sets of 2 “explosive” bench press repetitions (70% 1RM) 3 sets of bench press (70% 1RM) to failure | ↑ mean power & velocity ↑ repetitions to failure |
Faut il consommer des compléments pour l’oxyde nitrique ?
Selon moi, ce n’est pas le plus important pour un pratiquant de musculation. Si tu as déja optimisé au maximum ta nutrition et récupération de base, ton entrainement et tes niveaux de testostérone. Alors oui tu peux commencer a t’intéresser a l’oxyde nitrique pour améliorer encore plus tes performances.
Parmi les 3 molécules cités, tu peux oublier les compléments d’arginine, de 1 c’est absolument dégueulasse en terme de goût et de 2 c’est moins efficace que la citrulline et les nitrates qui eux n’ont pas un gout infect.
Parmi les deux, je te conseillerai plutôt la citrulline car elle aura un effet qui dure plus longtemps et est légèrement plus efficace. En plus elles est mois chère.
Donc pour améliorer tes niveaux d’oxyde nitrique, selon moi le meilleur choix c’est de prendre de la citrulline, et pas forcément juste avant l’entrainement mais plutôt de manière régulière (si tu veux en savoir plus, tu devrais lire mon article sur l’arginine car la citrulline est essentiellement un moyen d’augmenter pendant longtemps tes niveaux d’arginine).
Si tu consomme de la citrulline, fais attention a bien la conserver, referme le sachet correctement car sinon tu va te retrouver avec du chewing gum car la citrulline absorbe l’eau qui se trouve dans l’air. Aussi je te recommande de manger un truc avec car c’est très acide (citrus = citron).
Voila, c’est tout pour cet article, si ça t’intéresse, j’ai des articles sur les boosters de testostérone comme le Tongkat Ali ou la Fadogia Agrestis. Hésitez pas a me laisser un commentaire si tu as des questions ou remarques 🙂 .